دانلود پاورپونت با موضوع مدلسازی سیستم های بیولو ژیکی توسط شبکه های عصبی بازگشتی
در قالبppt
در41اسلاید قابل ویرایش
قسمتی از اسلایدها:
شبکه های عصبی به طور کلی سیستمهای ریاضی یادگیر غیر خطی هستند. طرز کار این شبکه ها از روش کار مغز انسان الگو برداری شده است. در واقع شبکه های عصبی طبق تعریف ماشینی است برای ساخت یک مدل که می توان آن را بوسیله سخت افزار یا نرم افزار شبیه سازی کرد و عملکردی شبیه مغز انسان دارند.
یک شبکه عصبی بر خلاف کامپیوترهای رقومی که نیازمند دستورات کاملا صریح و مشخص است٬ به مدل های ریاضی محض نیاز ندارد بلکه مانند انسان قابلیت یادگیری به وسیله تعدادی مٽال مشخص را دارد.
هر شبکه عصبی سه مرحله آموزش٬ اعتبار سنجی و اجرا را پشت سر می گذارد. در واقع شبکه های عصبی را می توان در حل مسایلی که روابط دقیق ریاضی بین ورودی ها و خروجی های آن برقرار نیست بکار برد.
آموزش دیدن شبکه های عصبی در واقع چیزی جز تنظیم وزن های ارتباطی این نرون ها به ازائ دریافت مٽال های مختلف نیست تا خروجی شبکه به سمت خروجی مطلوب همگرا شود
ها در واقع مثلثی هستند با سه ضلع مفهومی :
Iسیستم تجزیه و تحلیل داده ها
IIنورون یا سلول عصبی
IIIقانون کار گروهی نورونها (شبکه)
vANN ها دست کم از دو جهت شبیه مغز انسا ن اند:
Iمرحله ای موسوم به یاد گیری دارند.
IIوزن های سیناپسی جهت ذخیره ی دانش به کار می روند.
هوش مصنوعی و مدل سا زی شناختی سعی بر این دارند که بعضی خصوصیا ت شبکه های عصبی را شبیه سازی کنند. گرچه این دو روش ها یشان شبیه هم است، اما هدف هوش مصنوعی از این کار حل مسائل شخصی و هدف مدل سا زی شناختی ،ساخت مدلهای ریا ضی سیستم های نورونی زیستی می باشد
فهرست مطالب واسلایدها:
آشنایی با شبکه های عصبی زیستی
مبانی ANN ها
مدل ریاضی یک نورون
ایده ی اصلی عملکرد شبکه های عصبی مصنوعی
مهم ترین تفاوت حافظه ی انسان و حافظه ی کامپیوتر
شبکه های عصبی در مقابل کامپیوترهای معمولی
معایب ANN ها
کاربردهای شبکه های عصبی مصنوعی
فرآیند یادگیری شبکه
یادگیری تحت نظارت یا( supervised )
توپولوژی شبکه